Boswell-Bèta

James Boswell Exam VWO Mathematics B - Practice exam 2

Date:
Time: 3 hours
Number of questions: 6
Number of subquestions: 15
Number of supplements: 0
Total score: 82

- Write your name on every sheet of paper you hand in.
- Use a separate sheet of paper for each question.
- For each question, show how you obtained your answer either by means of a calculation or, if you used a graphing calculator, an explanation. Otherwise, no points will be awarded to your answer.
- Make sure that your handwriting is legible and write in black or blue ink. No correction fluid of any kind is permitted. Use a pencil only to draw graphs and geometric figures.
- You may use the following:
- Graphing calculator (without CAS);
- Protractor and compass;
- Dictionary, subject to the approval of the invigilator.

Question 1. Let the function $f(x)=\sqrt{4 x+8}$ be given.
In figure 1.1 the graph of f has been drawn.
Figure 1.1

Line ℓ is tangent to the graph of f at point $A(-1,2)$.
a. Prove that line ℓ is given by: $y-x-3=0$.
V is the part of the plane enclosed by the graph of f, line ℓ and the x-axis. In figure 1.1 area V has been shaded grey.
b. Calculate analytically the surface area of V.

Question 2. Let the function $f(x)=\left|x^{3}-3 x^{2}\right|$ be given.
The graph of f has been drawn in figure 2.1.
Figure 2.1.

The graph of f and the line $y=2 x$ have a number of points in common.
a. Calculate analytically the number of points they have in common.

Area V is the part of the plane that is enclosed by the graph of f and the x-axis. In figure 2.1 area V has been shaded grey.

Suppose area V is revolved around the x-axis.
b. Calculate algebraically the corresponding volume obtained by this revolution.

Question 3. Given is circle $c: x^{2}-12 x+y^{2}-16 y=0$. On circle c lie points $A(0,0), B(14,2)$ and $C(6,18)$.

Circle c and triangle $\triangle A B C$ have been drawn in figure 3.1.
Figure 3.1

The three altitude lines of $\triangle A B C$ have been drawn as well. (An alttude line of a triangle goes from a vertex of the triangle to the opposite side of the triangle under an angle of 90°.)

The altitude lines of triangle $\triangle A B C$ intersect each other at point $H(8,4)$.
a. Prove that $\angle A H B=135^{\circ}$.

The line through points C and H intersects line segment $A B$ at point D.
b. Calculate analytically the coordinates of point D.

Circle d is the circle going through points A, H and B. See again figure 3.1.
c. Prove that circle c has the same radius as circle d.

Question 4. The function f is given by:

$$
f(x)=\frac{x^{2}}{x+1}
$$

The graph of f has been drawn in figure 4.1.
Figure 4.1

a. Prove that:

$$
f^{\prime}(x)=\frac{x^{2}+2 x}{x^{2}+2 x+1}
$$

For certain values of p the line $l_{p}: y=-3 x+p$ is tangent to the graph of f.
b. Calculate analytically these values of p.

The function g is given by:

$$
g(x)=\frac{x^{3}-x^{2}}{x^{2}-1}
$$

The graph of g is equal to the graph of f after point $P\left(1, \frac{1}{2}\right)$ has been removed from the graph of f.
$5 p$ c. Show analytically that this is indeed the case.

Question 5. In figure 5.1 the graph of a certain function f has been drawn.
Figure 5.1

The graph of f is obtained from the graph of $y=e^{x}$ by subsequently:
(I) Translating the graph 5 units upward.
(II) Applying a multiplication of a factor $\frac{1}{3}$ with respect to the x-axis.
(III) Mirroring the graph in the line $y=x$.
a. Show that the graph of f can be described by the formula: $f(x)=\ln (3 x-5)$.

The line $\ell:\binom{x}{y}=\binom{4}{6}+t \cdot\binom{2}{6}$ is tangent to the graph of f.
b. Prove this.

Question 6. The motion of point P through the plane is given by the following equations:

$$
\left\{\begin{array}{l}
x(t)=\cos (t) \\
y(t)=\sin (2 t)+\cos (t)
\end{array} \quad(0 \leq t \leq 2 \pi)\right.
$$

The trajectory of point P is called curve K. In figure 6.1 curve K has been drawn.

Figure 6.1

Figure 6.2

Curve K intersects the line $x=\frac{1}{2} \sqrt{2}$ at points A and B.
a. Calculate analytically the length of line segment $A B$.

Point P passes the origin $O(0,0)$ twice: the first time with velocity vector \vec{v}_{1} and the second time with velocity vector \vec{v}_{2}.
b. Calculate algebraically the angle between vectors \vec{v}_{1} and \vec{v}_{2}.

There are 4 values of t on the interval $[0,2 \pi]$ for which point P passes the line $y=2 x$. See figure 6.2.
c. Calculate analytically for which values of t point P is above the line $y=2 x$.

